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There's always so much more behind the story: the motive, the victim,
the shooter, etc. We asked ourselves, what if you could see the factors
behind gun deaths and find patterns in these numbers?

Based on a data set on people who have been shot and killed by police
(from 2013 - 2014) and other data surrounding police shootings, we
created a correlative toolbox that allows the user to compare datasets
by choosing from a huge array of data categories.



Week 1

Exploring the Data
Fields

* name
- cause of death
« date of death

- state

. City

* gender + was the deceased armed

* age « did the deceased have priors

* race « was the officer fired or suspended
+ month of death

- year of death
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Plotting Data on Tableau .

Using Tableau to look for relationships between different fields of the data and to
explore any pattern and trend. - %
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Week 1

Research
Existing examples of how data has been mapped
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http://www.theguardian.com/us-news/ng-interactive/2015/jun/01/the-counted-police-killings-us-database
We really like the filtering system on “the guaridan”, and how
the users can toggle between map view and the list of people’s
information.

he Washington Post
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614 of the fatal shootings followed a wide range of violent crimes, including shootouts, stabbings, hostage situations,
carjackings and assaults. Read See them &

28 of them were black and unarmed. bout them. them below.

At least 73 people have been shot and killed by police across the United States within the past 30 days, according to Washington RERDEAIAE M"” L] ” RIFLIARATAERRER
Post data. This database is based on news reports, public records, Internet databases and original reporting. Read more. Lo f " "' ‘”” ﬂ MR"M" “"“"' M
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https://www.washingtonpost.com/graphics/national/police-shootings/

The thing we didn't liked about this site was that the user has
to scroll back and forth to view the whole image. However, it
is really cool that the site uses illustrtive figures to represent
each person.
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All others: 0

http://www.gannett-cdn.com/GDContent/mass-killings/index.html#weapons

The lines looks really
cool visually; however,
it's hard to tell the mean-
ing behind them. The
diraction of the lines is
also random. On the oth-
er hand, we really liked
the drop down sorting
option and wanted to
include in our screens.

We really liked the way
the site representing
data with interactive
graphs. This inspired us
to use bar graphs later in
our own design.
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Research
Other Visual Inspirations

DEMOCRATS
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Cool animation on
plotting dots to repre-
sent each single per-
son.

Cool visual using
transparencies and
layering representing
data.



Week 1

Research
Other Dataset

We researched on other related topics to see the relationships between police

) : Police Deaths
shootings and other possible factors.

Violent Crimes

S 7 Al
S i

Deaths by Police shootings

State Population

500K 1M 2M 5M 10M 20M 50M 100M
Population, 2000



Week 1

B Setting Directions
Potential Audiences Problem Space

==

Uncovering the narrative behind deaths by police shooting.

Journalism

Government

Goal

Looking for correlations.

Future Residents
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B Sketches
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B Sketches
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B Sketches
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Week 2
Analyzing Data

From the graph, we noticed that during some months, police shootings happen

more frequently than the other months. We start thinking about there might be a

relationship between deaths by police shooting and temperature/climate.
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Revised Direction
Goal

To show how climate and other correlative factors affect the number of civilian

deaths by police shootings

Target Audience

People who want to decrease shootings and death
People who want to predict when gun activity will arise

People who want to find a correlation between gun violence and climate People

selling guns who should be more aware of sell periods

Possible Personas

Weather Scientist
Criminologist

Global Warming Activist
NRA

Police

Gun Seller

Civilian



Week 2

Persona

Simon

Age: 47

Education: PHD

City: New York City, NY
Job: Criminologist

“I want to uncover the details that lead police to kill.”

Key Characteristics
« Always questions the information given to him
 Looks for connections and correlations between data

Motivations
* Analyze data to determine why crimes are committed
« Study the social impact of crimes

Goals
* Lower the number of police shootings
* Enforce gun law legislation
* Give people information to come to their own conclusions

Frustrations/Pain Points
- Skewed representation of police shootings in the media
* Not finding data that represents the truth behind police shootings
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Week 3

Research
Other Dataset

We did further research on other correlative factors of police shootings
(e.g. high school grad rate, firearm deaths, gun ownership and gun law
for each state, etc.). We realized climate might not be the only possible
factor. Then we decided to create a tool for users to explore the corre-
alations between datasets.
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Week 3

B Research

Other Inspirations

Photo Gallery Cause of death Race of deceased
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Week 4

Revised Directions
Goal Persona

To create a tool to find patterns in civilian deaths by police shootings

Simon
Datasets Age: 27

Education: Grad Student, Political Science
The What City: New York City, NY

Deaths by Police Shootings
Police Deaths by State
Firearm Deaths by State

“I want to understand the factors that contribute to deaths by police shootings.”
The Why Key Characteristics
* Likes to see both sides of the story

High School Graduation Rates Per City * Looks for relationships between data

Gun Law Ranking Per State
Gun Ownership in Households Per State

Temperature on Day of Shooting per City Motivations

« Wants to build a narrative himself to tell a complete story
« Wants to be bipartisan

Goals
* Needs accurate and dependable information
 Needs a clear way to understand the data

Frustrations/Pain Points
- Skewed representation of shootings in the media
* Has a hard time comparing states and their gun laws, gun violence, etc.



~ Week 4
B Low Fidelity Story Board

Total Peattis

1049

| DATA  STTS

1. Animation counting numbers of deaths by police shoot-
ing. Each dot represents a person and the dots appear in
chronological order.

2. A heat map comes in after the animation. The heat map
shows deaths by police shooting per capita by state. User
can compare the ratio in per capita and the actual number of
deaths with the heat map and the dots.

3. Users can add other correlative data sets to compare with
police shootings. The heat maps for different data sets will
layer on top of each other. Users can use sliders to select a
range on specific categories/data sets.

4. Users are able to toggle between map view and bar graph
view. Bar graphs help to see correlations easier.

5. Click on each individual state, more detailed information
of the state will appears, including the stats and each indi-
vidual person’s story.




State

New Mexico
Nevada
Oklahoma
Arizona
Mississippi
Utah
Montana
Kansas
Louisiana
Wyoming
Washington
Florida
Maine
California
Kentucky
Delaware
Alabama
Missouri
Oregon
Texas
Colorado
Tennessee
West Virginia
South Carolina
Maryland
South Dakota
Nebraska
Georgia
North Carolina
lowa

Hawaii

Idaho
Minnesota
Michigan
Arkansas

New Jersey
Wisconsin
Indiana
Vermon t
Virginia

North Dakota
Pennsylvania
New York
Rhode Island
Massachusetts
Connecf ticut
New Hampshire

Week 5

Analyzing Data

population_2014

2.086 million people
2.839 million people
3.878 million people
6.731 million people
2.994 million people
2.943 million people
1.024 million people
2.904 million people
4.65 million people
584153 people
7.062 million people
19.89 million people
1.33 million people
38.8 million people
4.413 million people
935614 people
4.849 million people
6.064 million people
3.97 million people
26.96 million people
5.356 million people
6.549 million people
1.85 million people
4.832 million people
5.976 million people
853175 people
1.882 million people
10.1 million people
9.944 million people
3.107 million people
1.42 million people
736732 people
12.88 million people
11.59 million people
1.634 million people
5.457 million people
9.91 million people
2.966 million people
8.938 million people
5.758 million people.
6.597 million people
626562 people
8.326 million people
739482 people
12.79 million people
19.75 million people
1.055 million people
6.745 million people
3.597 million people.
1.327 million people

Data sets:
Death by police shooting (main)

gun laws - ranking by state
gun ownership (2013)

firearm_death_2013  police_deaths_2014
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16.5
14.1
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1.4
19.3
16.7
87
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14.4
1
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1.5
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15.2
9.7
10
9
12,6
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8
26
19.8
8.6
1
141
7.6
12
16.8
57
9.7
13
9.2
10.2
1.8
1.2
42
53
3.1
4.4
6.4

Police deaths (2014)
Firearm deaths
high school graduation rates
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gun_law_grade  gun_law_grade % total_death_per_state police_shooting_deaths gun_ownersuip_%
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0.50 616 21

0 1009 25

0 265 7

0 734 18
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0 85 3

0.25 169 6

) z 30

0 1203 29
0.4175 249 9
0.8325 37 4
0 146 2
0.8325 1108 34
0.25 1275 30

0 230 a4

0.50 415 13
0.50 1189 21

0 498 6
0.9175 509 18
0.4175 559 10
0.1675 858 11
0 58 1

0.25 849 12

0 87 1

0.50 1432 17
0.9175 830 25
0.8325 56 1
0.9175 209 6
1.00 158 3
0.1675 85 1

0.375
0.312
0.323
0.428
0.319
0.523
0.322
0.445
0538
0.277
0.325
0.226
0.201
0.424
0.520
0.489
0.271
0.266
0.357
0.343
0.394
0.542
0.444
0.207
0.350
0.198
0.316
0.287
0.338
0.451
0.617
0.262
0.196
0.569
0.367
0.288
0.579
0.113
0.347
0.338
0.288
0.293
0.479
0.271
0.103
0.580
0.226
0.166
0.144

average_per_1000000 police  average_per_500000
9.1
8.5
77
6.7
6.7
6.1
5.9
5.5
52
5.1
4.8
4.7
4.5
4.5
43
43
4.1
4.1
4.0
4.0
3.9
3.8
3.8
3.7
3.7
3.5
32
3.0
29
29
28
27
26
26
24
2.4
21
20
20
¥z
17
1.6
1.4
14
13
13
0.9
0.9
0.8
0.8

3.715
2.430
2127
1.047
2.973
2141
8.154
1.963
2.075
14.294
0.616
0.299
4.098
0.198
1.552
5.504
1.815
1.187
1.385
0.197
1.074
1.176
3.865
1.573
0.812
5.860
2.391
0.624
0.608
1.287
0.915
13.438
0.334
0.475
4315
0.696
0.605
2.832
0.319
0.842
0.985
7.342
0.613
7.979
0.438
0.106
2.512
0.230
0.612
2411

graduation_rates_2012_2013
0.703
0.707
0.848
0.849
0.755
0.830
0.844
0.857
0.735
0.770
0.764
0.756
0.864
0.769
0.861
0.718
0.718
0.857
0.687
0.880
0.855
0.863
0.814
0.776
0.850
0.827
0.885
0.717
0.825
0.897
0.824
0.751
0.832
0.822
0773
0.798
0.770
0.804
0.875
0.880
0.870
0.866
0.845
0.875
0.855
0.768
0.797
0.850
0.804
0.873

The datasets above are the ones we decided to work with. And we think it would help us
better understand the data sets if we calculate the actual correlation between police shoot-

ing and other data sets.

Correlations:

1. death by police shooting
gun law grade 11%
gun ownership -24%
police deaths 71% (there are as many people being shot by police as there
are police being shot by people)
firearm deaths 12% (there is an insignificant correlation; the amount of peo
ple being shot does not relate to the amount being shot by police)
high school grad rates -11%
2. gun law grade
gun ownership -42% (as gun laws get better, gun ownership goes down)
police deaths 21%
firearm deaths -77% (as gun laws get better, firearm deaths go down)
high school grad rates 3%
3. gun ownership
police deaths 24%
firearm deaths 58% (as gun ownership goes up, firearm deaths go up)
high school grad rates -32%
4. Police deaths
firearm deaths -14%
high school grad rates -6%
5. firearm deaths
high school grad rates
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Week 6
W  Goal

To create a correlative toolbox that allows the user to compare
datasets by choosing from a huge array of data categories.

Final Persona

“I want to understand the factors that contribute to deaths by
police shootings.”

Key Characteristics
- Likes to have figures to back up his arguments
- Likes to see both sides of the story
* Looks for relationships between data

Motivations
« Wants to build a narrative himself to tell a complete story
« Wants to be bipartisan

Goals
- Compare different sets of data surrounding shootings to develop his thesis
* Needs accurate and dependable information
* Needs a clear way to understand the data

Simon Frustrations/Pain Points
Age: 27 * Has a hard time comparing states and their gun laws, gun violence, etc., to see how
Education: Grad Student, Political Science they are similar and different

City: New York City, NY - Skewed representation of shootings in the media
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Week 6
B Prototyping in Processing

Untitled

™ usmap | Processing 2.2.1

PShape usa;
PShape[] states;
String[] stateCodes;
String [][] csvShooting;
String [J[] csvPopulation;
int bar=0;
int[] popu;
int[] sortl;
int[] cap= {
©, 0, 6, 6, 0, 6, 0, 0, @, 0, 0, @, 0, @, @, 0, @, @, 0, @, O, O,
1
int[] sort2;
int[] statel= {
e, 9, ¢, ¢, 0, @, 0, @6, 0, ©, 0, 0, 0, 0, @, 0, @, 0, 0, 0, 0, O, (
1
int csvShootingWidth=0, csvPopulationWidth=0;
int number, sum;
PFont fontl, font2, font3, font4, font5, font6;

void setup() {

size(l024, 768);

usa = loadShape("Blank_US_Map.svg");

String linesShooting[] = loadStrings("police_shootings with coor.c:

14
15

You are running Processing revision 022

7, the latest build s 0247.

163



